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ABSTRACT
Lossless nonuniform microstrip tapers are useful
for the design of matching networks, filters, etc. In
this paper these tapers have been analysed. Reflec-

tion coefficient and complex impedance results are pre-
sented for exponential, parabolic and cosine squared
tapers. The paper also presents typical design data
for such tapers on 0.635 mm. thick alumina substrate.

Introduction

Tapered transmission lines are of interest in the
design of matching networks, filters, etc., in MIC's.
Analyses of tapered lines to date have dealt with
structures where the propagation constant remains con-
stant along the length of the taper. In microstrip
tapered lines the effective dielectric constant Srf

varies along the length of the line because it is a
function of the characteristic impedance. Hence, exis-
ting analyses [1-5], which use graphs or the Smith
chart for impedance matching problems are inadequate
for dealing with microstrip line tapers.

In this work, a modified Riccati equation is de-
rived to take the variation of the phase constant along
the tapered line into account. This is then applied to
exponential, cosine squared and parabolic tapers.

Derivation of Working Equations

(a) Input Impedance

To determine the expression for input impedance at
a point on the line, consider the equivalent circuit
of the microstrip taper (Fig. 1) shown in Fig., 2 for
the input impedance Zin at a distance £ from the

point on the line where Zin =Zy=71 + Jx, , we have,

L

for B2 sufficiently small as to approximate tanfR
by B4
z, + 3z(2)BL
Zin = 2N 70y F 32,82 D
where Z(%) 1is the characteristic impedance of the

line at the point &.

From equation (1) we have
dz

i _ % . az(r) |, £(1) + jg(2) .
ds 7(%) as NOKEERG)
where '
b(2) = Z(2) = x,82 (3)
c(R) =1, BL (4)
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- dz() _ }
£2) = r, (S5 - xa(W) - x;_ra() (5)
Z(%
() = 2 (EL 4 2yay) +
dzZ(L)
+x T an(Q)) + rinr%a(ﬁ) (6)
and
-4 48
a(l) =2  t B8 7
Equation (2) is a modified complex Riccati equation.
A closed form solution to it may exist depending upon

the type of the taper. Also, it can always be solved
on a digital computer using numerical techniques.

Reflection coefficient

(b)

The reflection coefficient T and the input im-
pedance Zin at any point on the line are related

through the equation

_1+7

Zin =1 -1 2®) (8)

Using equations (2) and (6) gives

dz(2) .
(== +jZ_a(L))
ar _1 ... .2 dz(e) _ NIFT I3
ar =2 ¢ T )Z(£)< TS Y I YO >
dz{e)
Z (1) (BX + z(2)a(L))
ol 2208Z(8) L. 2 ds
(1- ) D) +3(1-T) b(L) + jc(L) )]

Again this can be solved on a digital computer using
ds
ae
are computed using empirical expressions [6] for the
static TEM parameters of the mierostrip.

the fourth order Runge-Kutta technique. 8 and

Results

Using equation (2), variations of the normalized
input impedance along a half wave length line, for ex-
ponential, cosine squared and parabolic tapers have
been shown in Figs. 3-5. Reflection coefficient re-
sults for the tapers are shown in Fig., 6. Due to the
nonuniform phase shift along the line, it can be seen
that the minima of the (T)Vs L/}\O curves are not

located at the multiples of 0.5L/>\0 as in the case of
conventional TEM lines. A comparison of the curves

shows that the exponential taper offers the best per-
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formance while the cosine squared taper offers the
worst among the three kinds of tapers.

A general computer program has been developed for
analyzing and producing design data for such tapers.
Design curves for the width of the above-mentioned
tapers have been shown in Fig. 7 for a typical sub-
trate. The curves show that it is comparatively easy
to synthesize the exponential taper.
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Fig. 1 Tapered Microstrip line
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Fig. 2 Equivalent Circuit
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Fig. 3 Zin Vs K/AO (Exponential Taper)
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Fig. 4 Z, Vs Q/AO (Parabolic Taper)
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Fig. 5 Zin Vs R/AO (Cosine-Squared Taper)
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Fig. 6 Comparison of input reflection
Coefficients for different lines.
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Fig. 7 Design Curves.



